

Communication

Ruthenium-Catalyzed Decarbonylative Cyclization of 1,6-Diynes

Carlos Gonzlez-Rodrguez, Jess A. Varela, Luis Castedo, and Carlos Sa

J. Am. Chem. Soc., 2007, 129 (43), 12916-12917• DOI: 10.1021/ja0752888 • Publication Date (Web): 10 October 2007

Downloaded from http://pubs.acs.org on February 14, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 10/10/2007

Ruthenium-Catalyzed Decarbonylative Cyclization of 1,6-Diynes

Carlos González-Rodríguez, Jesús A. Varela, Luis Castedo, and Carlos Saá*

Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Received July 16, 2007; Email: qocsaa@usc.es

Ruthenium-catalyzed transformation is widely recognized as one of the most efficient means of alkyne functionalization.\footnote{1} Non-metathetic ruthenium-catalyzed C-C bond formation between alkyne partners proceeds via ruthenacycle/bis-carbene\footnote{2} or vinylidene\footnote{3} intermediates, depending on the nature of the alkynes and the reaction conditions. The intramolecular version has recently been applied to the cycloisomerization of diynols via ruthenacycles\footnote{4} and the carboxylative cyclization of 1,6-diynes via catalytic Ruvinylidenes.\footnote{5}.6 In the course of work on metal-vinylidene-catalyzed C-C bond-forming reactions,\footnote{7} we have developed, and report here, a process that nicely complements the latter transformation, namely a ruthenium-catalyzed cyclization-decarbonylation of 1,6-terminal diynes 1 mediated by carboxylic acids\footnote{8}.9 (Scheme 1).

Heating the electron-poor 1,6-diyne ${\bf 1a}~({\rm X}={\rm C(CO_2Me)_2},{\rm R}={\rm CO_2Me})$ in a 10 mol % solution of the catalyst ${\rm [CpRu(CH_3CN)_3]}$ -PF₆ in AcOH afforded, after 24 h at 90 °C, the *exo*-methylenecy-clopentane derivative ${\bf 2a}$, with one carbon less than ${\bf 1a}$, in good yield (Table 1, entry 1). Heating at 130 °C for 24 h led to some decomposition and a lower yield of ${\bf 2a}$ (entry 2). However, the more electron-rich, sterically more demanding catalyst ${\rm [Cp*Ru(CH_3CN)_3]}$ -PF₆ gave the dienylacetate ${\bf 3a}$ in quite good yield (entry 3), through cyclization and intermolecular addition of AcOH. The use of other Ru(II) catalysts, such as CpRu(PPh₃)₂Cl and (η 5-indenyl)Ru(PPh₃)₂-Cl, led to lower yields of ${\bf 2a}$ (entries 4 and 5), 11 as did dilution of ${\bf 1a}$ (entry 6). The reaction was indifferent to the identity of the carboxylic acid (entry 7).

Other 4-carbon or 4-aza substituted electron-poor 1,6-diynes **1b**—**d** behaved similarly, affording quite good yields of cyclopentylidenes **2b** and **2c** and pyrrolidine **2d**, respectively (Table 2, entries 2–4). Yields were lower without the 1-CO₂Me group (Table 2, entries 5 and 6), but the 1-silylated 1,6-diyne **1g** interestingly gave a slightly better yield of desilylated **2e** than its parent, **1e** (Table 2, entries 7 and 5). ¹² By contrast, ethyl-substituted 1,6-diyne **1h** gave a mixture of **2h** and alkyne **4h** in 2.5:1 ratio (entry 8).

Interestingly, although the propargyl ether 1i afforded the corresponding cyclopentylidene 2i at 90 °C (Table 2, entry 9), heating 1i at 130 °C for 24 h gave a 45% combined yield of dienes 5i and 5i' ($\Delta^{2,3}$) (R=H) through loss of MeOH (Table 2, entry 10),⁴ and similar yields of dienes 5j and 5j' (R=Me) were obtained on heating the tertiary alcohol 1j at 90 °C (Table 2, entry 11).⁴ However, aryl-substituted diynes 1k and 1l gave the corresponding cyclopentylidenes 2k and 2l in quite good yields even when $[Cp*Ru(CH_3CN)_3]PF_6$ was used as catalyst (Table 2, entries 12 and 13).

When 1,7-disubstituted 1,6-diyne **1m** was subjected to typical reaction conditions, dienylacetate **3m** was obtained in an excellent 95% yield (Scheme 2).⁴ This result clearly indicates that only a terminally unsubstituted yne unit will lose its terminal carbon in the cyclization process.

Not unexpectedly, carboxylative cyclization occurred when the reaction was performed with 1- or 8-unsubstituted 1,7-diynes 6.

Scheme 1. Ru-Catalyzed Decarbonylative Cyclization of 1,6-diynes 1

$$X = \frac{10\% \left[\text{CpRu}(\text{CH}_3\text{CN})_3 \right] \text{PF}_6}{\text{AcOH, 90 °C}}$$

$$X = C(\text{CO}_2\text{Me})_2, C(\text{CH}_2\text{OBn})_2, \text{NTs,etc}$$

$$R = \text{H, Ph, CH}_2\text{OMe, CO}_2\text{Me, etc}$$

$$AcOM_2 = \frac{1}{2} \text{AcOM}_2$$

$$AcOM_2 = \frac{1}{2} \text{AcO$$

Table 1. Ru-Catalyzed Cyclization of 1a in Acetic Acida

	<u> </u>				
entry	catalyst ^b	t°C	time	yield ^c	product
1	[CpRuL ₃]PF ₆	90	24 h	66%	2a
2	[CpRuL ₃]PF ₆	130	12 h	42%	2a
3	[Cp*RuL ₃]PF ₆	130	2 h	70%	$3\mathbf{a}^d$
4	CpRu(PPh ₃) ₂ Cl	90	48 h	22%	2a
5	$(\eta 5-In)Ru(PPh_3)_2Cl$	90	48 h	11%	2a
6^e	[CpRuL ₃]PF ₆	90	24 h	42%	2a
7 f	[CpRuL ₃]PF ₆	90	24 h	58%	2a

^a [1a] = 0.1 M except for entry 6. ^b L = CH₃CN, In= indenyl. ^c Isolated yields. ^d Mixture of Z/E isomers 3:2. ^e [1a] = 0.05 M. ^f Acrylic or propanoic acid.

Table 2. Ru-Catalyzed Cyclization of 1,6-diynes **1a**−**I** in Acetic Acid^a

entry	R	X	diyne	product	yield% ^b
1	CO ₂ Me	C(CO ₂ Me) ₂	1a	2a	66
2	CO_2Me	$C(CO_2Et)_2$	1b	2b	74
3	CO_2Me	$C(CH_2OBn)_2$	1c	2c	60
4	CO_2Me	NTs	1d	2d	55
5	Н	$C(CO_2Me)_2$	1e	2e	50
6	Н	NTs	1f	2f	43
7	TMS	$C(CO_2Me)_2$	1g	2e	53
8^c	Et	$C(CO_2Me)_2$	1h	2h	36
9^d	CH ₂ OMe	$C(CO_2Me)_2$	1i	2i	60
10^e	CH ₂ OMe	$C(CO_2Me)_2$	1i	5i + 5i'	45
11	$C(Me)_2OH$	$C(CO_2Me)_2$	1j	5j + 5j'	40
12^{d}	Ph	$C(CO_2Me)_2$	1k	2k	60 ^f
13^d	3-Furyl	$C(CO_2Me)_2$	11	21	53

^a Typical conditions: diyne **1** (0.1 M), 10 mol % [CpRu(CH₃CN)₃]PF₆, AcOH, 90 °C, 8−24 h. ^b Isolated yields. ^c Alkyne **4h** (14%) was also obtained. ^d Alkynes **4i** or alkynes **4k,l** were also obtained (<10%). ^e Reaction performed at 130 °C. ^f **2k** (55%), catalyst [Cp*Ru(CH₃CN)₃]PF₆.

This afforded dienylacetate **8a** or the regioisomeric dienylacetates **7b** and **8b** in quite good yields (Scheme 3 and Table 3), probably through formation of ruthenacycle intermediates followed by addition of AcOH.^{4,2c}

Scheme 4 shows a mechanism that would account for the above observations.¹³ Following the formation of ruthenium vinylidene **A**,⁸ nucleophilic addition of AcOH would afford the acyclic vinyl Ru-hydride **B**, which through a [3+2]-type cycloaddition would

Scheme 2. Ru-Catalyzed Cyclization of 1m in AcOH

Scheme 3. Ru-Catalyzed Carboxylative Cyclization of 1,7-diynes

Table 3. Ru-Catalyzed Carboxylative Cyclization of 1,7-diynes 6a.ba

entry	diyne	R ₁	R ₂	yield% ^b	7/8
1	6a	H	Me	85	0:1
2	6b	Et	H	68	7.5:1
3°	6b	Et	H	39	4:1

^a Typical conditions were as in Table 2. ^b Isolated yields. ^c Heating 6b at 130 °C favors formation of the homologue of uncyclized alkyne 4 (R = Et) in 39% yield. $E = CO_2Me$.

Scheme 4. Proposed Mechanism for the Ru-Catalyzed Tandem Cyclization-Decarbonylation of 1,6-Terminal Diynes 1

lead to cyclic carbene Ru-hydride C. Reductive loss of AcOH of C would give the cyclic carbene D, which undergoes another nucleophilic attack by AcOH to the acyl Ru-hydride E. Reductive opening of the ruthenacycle of E followed by oxidative addition of AcOH with concomitant decarbonylation of F led to the Ruhydride G.¹⁴ Finally, reductive elimination would then afford the observed cyclopentylidene 2.15 Analogous evolution of B would give alkyne 4 as a minor product. This mechanism would also account for 87% of the three hydrogens incorporated in 2a being deuterium when the reaction of 1a was carried out in AcOD.

In an attempt to insert a second alkyne in the ruthenacycle C, the reaction of the symmetrical triyne 1n was investigated. Unfortunately, cyclopentylidene 2n (49%) and uncyclized alkyne 4n (8%) were the only products observed.

In conclusion, we have developed a ruthenium-catalyzed tandem cyclization-decarbonylation whereby 7-unsubstituted 1,6-diynes

give exo-alkylidenecyclopentanes. The starting point of this process is likely to be the formation of an Ru-vinylidene complex. This new reaction is expected to open up further opportunities for the development of catalytic alkyne functionalization.

Acknowledgment. This work was supported by the MEC (Spain) and the E.R.D.F. (Grant CTQ2005-08613), Consolider Ingenio 2010 (Grant CSD2007-00006), and by the Xunta de Galicia (Grant PGIDIT06PXIC209041PN). C.G.-R. and J.A.V. thank the M.E.C. for a predoctoral grant and a Ramón y Cajal research contract, respectively.

Supporting Information Available: A typical procedure for the Ru-catalyzed reaction and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For a general review, see: (a) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. *Angew. Chem., Int. Ed.* 2005, 44, 6630. For books, see: (b) Murahashi, S.-I., Ed. *Ruthenium in Organic Synthesis*; Wiley-VCH: Weinheim, Germany, 2004. (c) Bruneau, C., Dixneuf, P. H., Eds. *Topics*
- in Organometallic Chemistry; Springer: Berlin, 2004; Vol. 11. (2) Alkynol dimerization: (a) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2001, 123, 8862. (b) LePaih, J.; Monnier, F.; Derien, S.; Dixneuf, P. H.; Clot, E.; Eisenstein, O. J. Am. Chem. Soc. 2003, 125, 11964. (c) Le Paih, J.; Derien, S.; Demerseman, B.; Bruneau, C.; Dixneuf, P. H.; Toupet, L. Dazinger, G.; Kirchner, K. Chem. Eur. J. 2005, 11, 1312. [2+2+2] cycloadditions: (d) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143. (e) Kirchner, K.; Calhorda, M. J.; Schmid, R.; Veiros, L. F. J. Am. Chem. Soc. 2003, 125, 11721. (f) Yamamoto, Y.; Ishii, J. i.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712. (g) Cadierno, V.; Garcia-Garrido, S. E.; Gimeno, J. J. Am. Chem. Soc. 2006, 128, 15094
- For reviews, see: (a) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. **2006**, 45, 2176. (b) Wakatsuki, Y. J. Organomet. Chem. **2004**, 689, 4092. (c) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Coord. Chem. Rev. 2004, 248, 1627. Alkyne dimerization: (d) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453 (e) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604. (f) Fryzuk, M. D.; Huang, L.; McMannus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. Organometallics 1992, 11, 2979. (g) Braun, T.; Meuer, P.; Werner, H. Organometallics 1996, 15, 4075. (h) Slugovc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 5275. For a Rh-catalyzed hydrative dimerization of 1-alkynes, see: (i) Park, Y. J.; Kwon, B. I.;
- Ahn, J. A.; Lee, H.; Jun, C. H. *J. Am. Chem. Soc.* **2004**, *126*, 13892. (a) Trost, B. M.; Rudd, M. T. *J. Am. Chem. Soc.* **2002**, *124*, 4178. (b) Trost, B. M.; Rudd, M. T. *J. Am. Chem. Soc.* **2003**, *125*, 11516. (c) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 476
- (5) Kim, H.; Goble, S. D.; Lee, C. J. Am. Chem. Soc. 2007, 129, 1030.
- For, a Pd-catalyzed, reductive cyclization of 1,6-diynes, see: Trost, B. M.; Lee, D. C. J. Am. Chem. Soc. 1988, 110, 7255.
- For reviews on vinylidene carbene complexes, see: (a) ref 3a-c. (b) Bruce, M. I. Chem. Rev. 1991, 91, 197. (c) Varela, J. A.; Saá, C. Chem. Eur. J. 2006, 12, 6450. (See also ref 1.)
- (8) For, an Ru-catalyzed, cyclization-decarbonylation of terminal alkynals,
- see: Varela, J. A.; González-Rodríguez, C.; Rubín, S. G.; Castedo, L.; Saá, C. J. Am. Chem. Soc. 2006, 128, 9576.
 (9) For, reductive cyclizations, see: Krische, M. J.; Jang, H.-Y. In Comprehensive Organometallic Chemistry III; Mingos, D. M. P., Crabtree, R. H., Eds.; Elsevier: Oxford, England, 2007; Vol. 10, pp 493–536.
- (10) This type of nucleophile addition has been observed before: (a) for diynes, see ref 4b; (b) for alkynes, see ref 2b.
- (11) For comprehensive screening results, see Supporting Information.
- (12) Most likely, desilylation of the putative silylated cyclopentane 2g occurred under the reaction conditions.
- We thank a reviewer for valuable suggestions.
- (a) Le Paih, J.; Rodriguez, D. C.; Derien, S.; Dixneuf, P. H. Synlett 2000, 95. (b) No carbonylated product was observed when reaction of 1e was performed under an atmosphere of CO. See Supporting Information for details.
- The Z geometry of 2 was determined by NOE experiments (see Supporting Information for details).

JA0752888