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Ruthenium-catalyzed transformation is widely recognized as one Schgme 1.
1,6-diynes 1

/—:
=R

of the most efficient means of alkyne functionalizatfoilon-
metathetic ruthenium-catalyzed—C bond formation between
alkyne partners proceeds via ruthenacymtetarbené or vi-
nylidené intermediates, depending on the nature of the alkynes

and the reaction conditions. The intramolecular version has recently X = C(1002Me)2, C(CH,0Bn)y, NTs ete 2
been applied to the cycloisomerization of diynols via ruthenacycles R = H, Ph, CH,0OMe, CO,Me, etc

and the carboxylative cyclization of 1,6-diynes via catalytic Ru- OAc

vinylidenes>®In the course of work on metal-vinylidene-catalyzed z /—Me R
C—C bond-forming reactionsye have developed, and report here, NS X XS Z
a process that nicely complements the latter transformation, namely 3 n 4 R 2 ®

a ruthenium-catalyzed cyclization-decarbonylation of 1,6-terminal

10% [CpRu(CH3CN)3]PFg

AcOH, 90 °C

Ru-Catalyzed Decarbonylative Cyclization of

x(j\rH

R

diynes1 mediated by carboxylic apiélg (Scheme 1). Table 1. Ru-Catalyzed Cyclization of 1a in Acetic Acid2
Heatln_g the electron-poor_ 1,6-diyda (X = C(COMe),, R= entry catalyst rC e Jielde roduct
CO;Me) in a 10 mol % solution of the catalyst [CpRu(6EN)]- .
PFR; in ACOH afforded, after 24 h at 98C, theexomethylenecy- ; {gggﬂtﬂgz 128 igu igo//‘; gg
clopentane derivativ@a, with one carbon less thaha, in good 3 [Cp*RuLs]PFs 130 2h 70% 3
yield (Table 1, entry 1). Heating at 13 for 24 h led to some 4 CpRu(PPH-Cl 90 48 h 22% 2a
decomposition and a lower yield @& (entry 2). However, the more 2 [(27:5-F|QH)LF§]UFEEBPB)2CI 38 4212 E gz;o ga
i . . . _ © pRu (] a
electron-rich, sterically more demanding catalyst [Cp*RU{CMN);] 7 [CPRULJPF: 90 24h 58% oa

PFs; gave the dienylacetaain quite good yield (entry 3), through
cyclization and intermolecular addition of AcOFiThe use of other
Ru(ll) catalysts, such as CpRu(RREI and ¢75-indenyl)Ru(PP¥),-

Cl, led to lower yields ofa (entries 4 and 53t as did dilution of
la (entry 6). The reaction was indifferent to the identity of the
carboxylic acid (entry 7)!

a[la]l = 0.1 M except for entry 62 L = CH3CN, In=indenyl. ¢ Isolated
yields. 9 Mixture of Z/E isomers 3:2¢[1a] = 0.05 M. f Acrylic or propanoic
acid.

Table 2. Ru-Catalyzed Cyclization of 1,6-diynes 1a—I in Acetic
Acid?

Other 4-carbon or 4-aza substituted electron-poor 1,6-diynes g, R X diyne product yieldo
1p—d behaved similarly, aff.or.dlng quite gopd yields of cyclopen- 1 COMe C(COMe) 1a a 66
tylidenes2b and2cand pyrrolidine2d, respectively (Table 2, entries 2 COMe C(COEt), 1b 2b 74
2—4). Yields were lower without the 1-G®le group (Table 2, 3 COMe C(CHOBnN), lc 2c 60
entries 5 and 6), but the 1-silylated 1,6-diyhginterestingly gave 4 COMe NTs 1d 2d 55
a slightly better yield of desilylatePethan its parentle(Table 2, 2 : ﬁ(T(;QMe)Z i]‘? 22fe zg
entries 7 and 5)? By contrast, ethyl-substituted 1,6-diyfib gave 7 ™S C(COMe), 19 2 53
a mixture of2h and alkyne4h in 2.5:1 ratio (entry 8). 8° Et C(COMe), 1h 2h 36

Interestingly, although the propargyl ethéi afforded the 9 CH.OMe C(CGMe), Li 2 60
corresponding cyclopentyliden2 at 90 °C (Table 2, entry 9), i(l)e %TI\Z/I(QASH ggggngz i! gli? ig
heatingli at 130°C for 24 h gave a 45% combined yield of dienes | Ph C(CQMe)z 1Jk ij ! 60
5i and5i' (A%9) (R = H) through loss of MeOH (Table 2, entry 13 3-Furyl C(CQMe), 1 2| 53

10)# and similar yields of dienesj and5j’ (R = Me) were obtained
on heating the tertiary alcohd}j at 90°C (Table 2, entry 113.
However, aryl-substituted diyndsk and1l gave the corresponding
cyclopentylidenes2k and 2| in quite good yields even when
[Cp*Ru(CH;CN);]PFs was used as catalyst (Table 2, entries 12
and 13).

When 1,7-disubstituted 1,6-diyrfem was subjected to typical
reaction conditions, dienylacete®en was obtained in an excellent
95% vyield (Scheme 2).This result clearly indicates that only a
terminally unsubstituted yne unit will lose its terminal carbon in
the cyclization process.

Not unexpectedly, carboxylative cyclization occurred when the
reaction was performed with 1- or 8-unsubstituted 1,7-diy@ies

a Typical conditions: diyné (0.1 M), 10 mol % [CpRu(CHCN)3]PFs,
AcOH, 90 °C, 8-24 h.PIsolated yields¢ Alkyne 4h (14%) was also
obtainedd Alkynes 4i or alkynes 4k, were also obtained <{10%).
e Reaction performed at 13€. f 2k (55%), catalyst [Cp*Ru(CECN)s]PFes.

This afforded dienylacetai&a or the regioisomeric dienylacetates
7b and8b in quite good yields (Scheme 3 and Table 3), probably
through formation of ruthenacycle intermediates followed by
addition of AcOH%2¢

Scheme 4 shows a mechanism that would account for the above
observation$? Following the formation of ruthenium vinylidene
A8 nucleophilic addition of AcOH would afford the acyclic vinyl
Ru-hydrideB, which through a [3-2]-type cycloaddition would

12916 = J. AM. CHEM. SOC. 2007, 129, 12916—12917 10.1021/ja0752888 CCC: $37.00 © 2007 American Chemical Society
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Scheme 2. Ru-Catalyzed Cyclization of 1m in AcOH
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Scheme 3. Ru-Catalyzed Carboxylative Cyclization of 1,7-diynes
R, AcQ
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Table 3. Ru-Catalyzed Carboxylative Cyclization of 1,7-diynes
6a,b?

entry diyne Ry R, yield%? 718
1 6a H Me 85 0:1
2 6b Et H 68 7.5:1
3 6b Et H 39 4:1

aTypical conditions were as in Table 2Isolated yields¢ Heating6b
at 130°C favors formation of the homologue of uncyclized alkyhgR =
Et) in 39% yield. E= CO;Me.

Scheme 4. Proposed Mechanism for the Ru-Catalyzed Tandem
Cyclization-Decarbonylation of 1,6-Terminal Diynes 1

p D P
X _H'Rtf.c - - < SuTHD)
H(D) HD) P OAc
E R R
Aco X uCe c
= AcOH(D)
[Ru] = CpRuOAC {=)] p R ACOH(D)

lead to cyclic carbene Ru-hydride. Reductive loss of AcOH of
C would give the cyclic carben®, which undergoes another
nucleophilic attack by AcOH to the acyl Ru-hydrifie Reductive
opening of the ruthenacycle & followed by oxidative addition
of AcOH with concomitant decarbonylation &f led to the Ru-
hydride G.** Finally, reductive elimination would then afford the
observed cyclopentyliden2'> Analogous evolution o8 would
give alkyne4 as a minor product. This mechanism would also
account for 87% of the three hydrogens incorporateddrbeing
deuterium when the reaction @& was carried out in AcOD.

In an attempt to insert a second alkyne in the ruthenac@cle
the reaction of the symmetrical triynén was investigated.
Unfortunately, cyclopentyliden2n (49%) and uncyclized alkyne
4n (8%) were the only products observed.

In conclusion, we have developed a ruthenium-catalyzed tandem
cyclization—decarbonylation whereby 7-unsubstituted 1,6-diynes

[Rul, E Me
+
£ 57% Me* g — .
g 61 2n 4n
E = CO,Me E E Me E

give exaalkylidenecyclopentanes. The starting point of this process
is likely to be the formation of an Ravinylidene complex. This
new reaction is expected to open up further opportunities for the
development of catalytic alkyne functionalization.
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